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Summary of Progress 

During the period June 1, 1986 - November 30, 1986, progress was made in the 

following areas: 

1) Undetected Error Probability and Throughput Analysis of a Concatenated Coding 

Scheme. 

A paper summarizing our work on the performance analysis of NASA's telecom- 

mand system has been accepted for publication by the IEEE Transactions on Commun- 

ications [ 11. Copies of this paper were included in a previous report. 

2) Capacity and Cutoff Rate Analysis of Concatenated Codes. 

A paper summarizing our work on analyzing the capacity and cutoff rate of the 

"outer channel" formed by the combination of the actual physical channel and the 

inner encoder and decoder in a NASA concatenated coding system has been accepted 

for publication by the IEEE Transactions on Information Theory [2]. Copies of this 

paper were included in a previous report. 

3) Concatenated Codes Using Bandwidth Efficient Trellis Inner Codes. 

A paper summarizing our work on determining the performance of bandwidth 

efficient trellis inner codes for use in a NASA concatenated coding system is being 

prepared for submission to the IEEE Transactions on Communications [3]. A presen- 

tation on this work was also made at the 1986 IEEE International Symposium on 

Information Theory [4]. A preliminary version of the paper was included in a previ- 

ous report. 

4) Bounds on the Minimum Free Euclidean Distance of Bandwidth Efficient Trellis 

Codes. 

A paper summarizing our work on obtaining lower bounds on the minimum free 

Euclidean distance of bandwidth efficient trellis codes is being prepared for submission 

to the ZEEE Transactions on Information Theory [SI. Two preliminary papers on this 

subject were recently presented at conferences [6,7]. Copies of these papers are 

included as Appendices to this report. This work is primarily theoretical and 
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establishes achievable lower bounds on free distance for trellis codes. These bounds 

can then be used as a benchmark to compare the performance of various codes, includ- 

ing those which we have constructed. 

5 )  Construction of Multidimensional Bandwidth Efficient Trellis Codes for Use as 

Inner Codes in a Concatenated Coding System. 

Unit-memory 0 and partial-unit-memory (PUM) convolutional codes are 

known to offer a performance advantage over standard convolutional codes when used 

as inner codes in a concatenated coding system [8]. We have investigated the use of 
multidimensional bandwidth efficient UM and PUM trellis coded phase modulation for 

use in a NASA concatenated coding system. We feel that these codes will also offer a 
performance advantage over standard bandwidth efficient trellis codes when used in a 

concatenated system. These codes are well suited for use with multidimensional signal 

constellations, which are known to offer an additional performance advantage over 

two-dimensional constellations [9]. Details of our performance analysis of these codes 

will be included in our next report. 

The construction of the multidimensional UM and PUM trellis codes offered a 

number of interesting challenges. A paper containing all the details of this construc- 

tion has been submitted for publication to the IEEE Transactions of Information 

Theory [lo] and is also included as an Appendix to this report. A brief summary of 

this work now follows. 

Trellis coded modulation (TCM) can be classified into two basic types, the 

lattice-type (e.g., M-AM, M-QASK) and the constant-envelope-type (e.g., MPSK). 
The latter has a slightly lower power efficiency compared with the former but is more 

suitable for nonlinear band-limited channels. In any TCM design, partitioning of the 

signal set into subsets with increasing intra-subset distances plays a central role [ 113. 

It defines the signal mapping used by the modulator and provides a tight bound on the 

Euclidean distance (ED), which pennits an efficient search for optimum codes. For 

latticetype TCM, Calderbank and Sloane [12] have made the important observation 

that the partioning of the signal set into subsets corresponds to the partitioning of a 
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lattice into a sublattice and its cosets. Forney [13] then developed a method, called the 

"squaring construction", of partitioning higher dimensional lattices from a lower 
dimensional lattice by using a coset code. However, his approach does not apply to 

constant-envelope-type TCM. 

In this work, we investigate unit-memory (UM) and partial-unit-memory (PUM) 

trellis coded 2L-dimensional (L 2 2) 8PSK ( or L*8PSK ) modulation. The L"8PSK 

signal set is generated simply by repeating an 8PSK signal L times. Therefore, the 

2L-dimensional 8PSK signal set is the Cartesian product of L 2-dimensional 8PSK sig- 

nal sets, i.e., Sx = S ~ X S ~ X - X S ~  (L times ). Sx has some interesting features which 

are not found in S2. Codes with higher effective information rates and larger coding 

gains are possible due to the increased flexibility of coding in S,. 

The construction of trellis coded L*8PSK modulation is accomplished by using 

Ungerboeck's [ 11) concept of "mapping by set partitioning". A systematic approach to 

partitioning the 2L-dimensional 8PSK signal space into subsets is presented. This 

approach simplifies both the construction of the coded L*8PSK modulation and the 

corresponding binary convolutional encoder design. The set partitioning of the 2L- 

dimensional 8PSK signal space into subsets is shown to be equivalent to partitioning 

the L-dimensional binary vector space into a subcode and its cosets. As examples, we 

give the signal space partitions for 2, 4, and 8-dimensional 8PSK modulation. 

TCM has been mostly restricted to the case where the code rate R = (n-l)/n. In 
our code constructions, however, we remove this condition by considering code rates 

R=(3L-i)/3L, L = 2, 3,  4 ,  i = 1, 2, - e ,  such that the effective information rate R g 2  1 

bits/dimension. TCM designs are illustrated by several examples. The procedure for 

implementing the TCM designs through the use of binary UMPUM convolutional 

encoders is also presented. The UMPUM trellis coded 2, 4, and 8-dimensional 8PSK 

modulation is specified by listing the code generator matrices. Codes with coding 

gains of up to 1.9 dB over those achieved with trellis coded 2-dimensional modulation 

are obtained. 
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ABSTRACT 

A comparison of Trellis Coded Modulation (TCM) schemes is considered. The 

approach is based upon a lower bound on the minimum free Euclidean distance dfiee of TCM. 

The bound is similar to the bound of Costello [l] and Forney [2] on the free distance of con- 

volutional codes. We evaluate the lower bound on dfieL for various modulation constellations 

and trellis codes, such as those proposed by Ungerboeck [3], and Lafanechere and Costello [4], 
and compare it with Calderbank, Mazo, and Wei's upper bound [5,6]. 

PROBLEM FORMULATION 

A TCM scheme is defined by a binary trellis encoder, a signal constellation, and a 

mapping of signals onto the trellis. Let k be the information block length and v the memory 

length of the encoder. Then vo = k v is the constraint length of the code (we assume that the 
encoder contains k memory registers of equal length v). The encoder is a finite state machine 

with 2'' states and 2' branches to and from each state. The error probability of a code used 

with maximum-likelihood (Viterbi) decoding on an AWGN channel can be bounded in terms 

of its minimum free distance dBe. Therefore an efficient mapping will assign channel signals 

to branches to achieve maximum d*, when using maximum likelihood decoding. The lower 
bound on dBe uses a random coding argument based on the moment generating function 

eaPd2 C -&:'& where the overbar indicates an average over the ensemble of all code T - r  
This work was supported by NASA grant NAGS-557 and NSF grant ECS84-14608. 



choices (for a given trellis), the first sum is over all choices of paths y, the second sum is over 

all paths y' diverging from y, a and p are arbitrary constants, d is the lower bound on dhe, and 
de is the Euclidean distance associated with a particular pair of paths. The lower bound is a 
function of a trellis and a signal constellation, but not of a specific mapping (i.e., it is a ran- 

dom coding bound). A trellis is characterized by vo and k. A signal constellation is character- 

ized by its dimensionality, energy, point separation and set partitioning. We now see how 

these parameters affect the lower bound on dhC. 

DERIVATION OF THE BOUND 

Forney [2] set forth clearly the following bounding technique, which owes much to 

Chernoff [7], Gallager [8], and Viterbi [9]. The technique includes 6 steps. We use only the 
fist 4. 

I )  Step I :  Define a random ensemble 

The random ensemble is the set of all "non-linear, time-varying codes" associated with 

a specific signal constellation and a specific trellis. 

2) Step 2: Obtain a bound on the moment-generating function: eapdZ z k  e - ~ ~ " ' ] '  
Y Y' 

If the probability over all codes in the random ensemble that dPee is smaller than some 

d is less than 1, there exists a code for which dfie is actually larger than or equal to d.  This 

can be written as follows: 

P (dh,(code) c d) c 1 -+ there exists a code such that dfwe 2 d. 
dl codu 

Furthermore, 

where 

Hence, 

there exists a code such that dBe 2 d if -- c 1. 
Y LY' J 
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3) Step 3: Configuration counting 

Equation (1) contains an average over all codes of a function Tap. T,,(code) depends 

on the codewords of a specific code. Shannon's random coding technique switches the sum 

over all codes and the sum over all codewords and obtains an average over all codewords of 

another function fGp. f&(codeword) represents the probability over all codes that a specific 

codavord is chosen. Here, the codewords are the paths through the trellis. "Configuration 

counting" determines the number of occurrences of a specific path in all the codes. This 

enables us to calculate fqP. 

4 )  Step 4 :  Reduce the above bound to a usable form (Gallager's Lemma) 

Step 3 puts the bound in random coding form. Step 4 (see Gallager [SI) puts the 

bound in its final form. 

STATEMENT OF THE BOUND 

Given a signal constellation S, there exists a (k, vo) trellis code with minimum Euclidean dis- 

tance dfreC such that: 

where: 

k is the information block size, 

vo is the constraint length, 

S is the signal constellation, 

a and p are parameters to optimize the bound, 
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s and s' are signal points from the signal constellation S, 

d,(s,s') is the Euclidean distance between the signal points s and s', 

and p(s)  is a probability distribution on S. 

APPLICATION OF THE BOUND 

A signal s can itself be a subset of the constellation when a trellis contains parallel 

transitions. The subset is composed of signals assigned to the parallel transitions. This enables 

us to study the effects of uncoded bits in the encoder, or, equivalently, the effects of mapping 

signals onto a trellis with parallel transitions using Ungerboeck's "set partitioning" method [3]. 

A trellis is entirely characterized by k and vg. Thus each evaluation of the bound 

corresponds to one trellis, and represents the average free distance of all the corresponding 
trellis codes. However, since the bound is a random coding bound, it does not represent the 

best free distance achievable with a particular trellis. 

Lower bounds on dpCc have been obtained for binary convolutional codes using the 

Hamming distance metric [1,2]. Like the lower bounds on the Hamming dPce, this lower 

bound on the Euclidean dfrce is exponentially tight and varies linearly with vo for large vo. 
Like any other "Gilbert type" bound, this lower bound is not expected to be tight for small vo. 

The bound depends explicitly on the constraint length vo and implicitly on the informa- 

tion rate per dimension R 2 k. Although only certain discrete values of vo and R are possi- 
dim 

ble, we sketch CZ;~,(V~) and %(R) as continuous functions. 
VO 

USING THE BOUND TO EVALUATE TCM SCHEMES 

I )  dp,, viewed as afinction of vo: 

The lower bound on dp,, increases with the constraint length vg. Bounds on the free 

Hamming distance of binary convolutional codes have usually been expressed as functions of 

vo. This leads to asymptotic, exponentially tight bounds on dPec when vo is large but the 
bounds are not tight for small constraint lengths. In the following paragraphs we compare con- 

stellations at a given rate R of information bits per dimension and at a given average energy 

Eavg per dimension. 



* The effect of increasing the number of signals on dfiee (same rate R, same dimensional- 

ity dim, same average energy Em#): 

Increasing the number M of signals increases d& because it provides more flexibility 

in the choice of signals assigned to trellis branches (flexibility in the mapping). Signals with 

greater distance can be chosen on branches of merging paths, which increases dPee. Note that 

increasing M, while keeping k constant, lowers the code rate R, = - . Fig.1 shows PAM 

schemes with different numbers of signals (M = 4, 8, 16, 128). Increasing the number of sig- 

nals provides more gain for small constraint lengths vo than for large constraint lengths, 

because when vo is large flexibility in mapping is provided by the complexity of the encoder. 

In Fig.1, going from 4-PAM to 8-PAM or even 16-PAM provides most of the gain and higher 

order PAM schemes do not improve significantly. Note that the gain in dfiee may not be 
worth the added modulation complexity. 

'%2M 

* The effect of increasing the signal set dimensionality on dfiee (same rate R ,  same 

number of signals M ,  same average energy Ern&: 

Increasing the signal set dimensionality increases dfiee. Higher dimensional schemes are 

obtained by using a basic one- or two-dimensional constellation for several transmission inter- 

vals [4]. Fig.2 shows L-dimensional schemes for which the constellation is constructed from L 
uses of a given 1-dimensional constellation (here 4-PAM). For a given constraint length vo, 
higher dimensionality yields a larger dPee, and as vo increases the curves diverge and the gain 

goes to infinity. However, the error coefficient increases with dimensionality [lo], which may 

cancel the gain from the increased dfiee at moderate decoded bit error rates. 

* The effect of changing the modulation scheme on dpee (same dimensionality dim, same 

number of signals M, same average energy Emg, same rate R):  

Changing the modulation scheme affects dfiee. For example, rectangular constellations 

yield a larger +ee than constant envelope constellations. Fig.3 shows M-PSK vs. M-QASK. 

This suggests that a penalty is associated with constant envelope modulation. Note that 

this penalty increases with the constnint length. Furthermore, the bound gives a means of 
optimizing some parameters associated with a specific type of constellation without searching 

exhaustively for the best constellation. 

* The effect of uncoded bits or parallel transitions on +ee when the signal constellation 

is "mapped by set partitioning": 



Uncoded bits generate parallel transitions in the trellis and limit dpe0 since cannot 

be larger than the minimum distance between parallel transitions (the minimum distance within 

the subsets created by "set partitioning"). Fig.4 shows that for 8-PSK, 1 uncoded bit increases 

+ee for small constraint lengths. For small vo, this agrees with the best known codes con- 

structed [3]. For large voy however, we see that 1 uncoded bit limits the achievable dfiec. The 

bound shows whether uncoded bits combined with mapping by set partitioning will increase 

dfee for small constraint lengths vo. 

2 )  Comparison of the lower bound on dfiee with upper bound [5,6] and known codes [3]: 

The upper bound is expected to be tighter than the lower bound for small constraint 

lengths, and the lower bound is expected to be tighter for large constraint lengths (this is analo- 

gous to the way bounds on binary convolutional codes behave). The lower bound is a 
"Chernoff type" bound and therefore is exponentially tight when VO is large. Fig.5 shows that 

the upper bound is tighter than the lower bound for small constraint lengths. But the lower 

bound becomes tighter as vo increases. The slope of the lower bound gives a precise indica- 

tion of the asymptotic rate of increase in dfiee. Finally, the lower bound guaranties the existence 

of codes that can achieve a certain dfiee. 

k as a function of R = - for large vQ. dfiee 3) Asymptotic behaviour: - 
VQ dim 

For a given constellation, the achievable - dfiee is larger for small R than for large R. 
VO 

dfiee 
VO 

Graphs of -(R) give a means of comparing the asymptotic behaviour (large vo) of dti,, for 

different constellations. Several examples are shown in Fig.6. The largest achievable rate R 

R, for a code rate R,. These depends on the constellation and its dimensionality : it is - 
largest achievable rates appear clearly in Fig.6. Rectangular lattices consuucted from the same 
1-dimensional constellation (for example 4-PAM in Fig.6) yield the same graph, which means 

that these rectangular lattices have the same asymptotic behaviour. In other words the curves 
+ee(v~) are parallel for large vg. The lower bounds are compared with an asymptotic upper 

bound [6] in Fig.6. 

log@ 
dim 



CONCLUSION 

We have obtained a random coding lower bound on dPeL. It takes into account the 

actual Euclidean distances between points of the channel signal constellation. As with any 

"Gilbert" bound, it is most useful as an asymptotic bound. It provides a means of comparing 

the asymptotic performance of different modulation schemes. 
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ABSTRACT 

A comparison of Trellis Coded Modulation (TCM) schemes is considered. The 

approach is based upon a lower bound on the minimum free Euclidean distance dfrLe of TCM. 

The bound is similar to the bound of Costello [l]  and Forney [2] on the free distance of con- 

volutional codes. We evaluate the lower bound on dfiaa for various modulation constellations 

and trellis codes, such as those proposed by Ungerboeck [3], and Lafanechere and Costello [4], 

and compare it with Calderbank, Mazo, and Wei's upper bound [5,6]. 

PROBLEM FORMULATION 

A TCM scheme is defined by a binary trellis encoder, a signal constellation, and a 

mapping of signals onto the trellis. Let k be the information block length and v the memory 

length of the encoder. Then vo = k v is the constraint length of the code (we assume that the 

encoder contains k memory registers of equal length v). The encoder is a finite state machine 

with 2"' states and 2k branches to and from each state. The error probability of a code used 

with maximum-likelihood (Viterbi) decoding on an AWGN channel can be bounded in terms 

of its minimum free distance d@#. Therefore an efficient mapping will assign channel signals 
to branches to achieve maximum dfi, when using maximum likelihood decoding. The lower 

bound on dp,= uses a random coding argument based on the moment generating function 

ea@' xlz e-&"&r, where the overbar indicates an average over the ensemble of all code 
Y LY' J 
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Mors-clds: Codes de treill is et modulation, distance Euclidiennne minimale, borne 

minorante. 

1 INTRODUCTION 

A TCM scheme is defined by a binary trellis encoder, a signal constellation, and 

a mapping of signals onto the trellis. Let k be the information block length and v the 

memory length of the encoder. Then vo = k v is the constraint length of the code (we 

assume that the encoder contains k memory registers of equal length v). The encoder 

is a finite state machine with 2"O states and Zk branches to and from each state. The 

error probability of a code used with maximum-likelihood (Viterbi) decoding on an 

AWGN channel can be bounded in terms of its free distance dbeC. Therefore an 

efficient mapping will assign channel signals to branches to achieve maximum free 

distance max(dfiee). The lower bound on max(dPee) uses a random coding argument based 

on the moment generating function ewd2 c 1 c e-&'"]', where the overbar indicates 

an average over the ensemble of all code choices (for a given trellis), the first sum is 

Y Yt 

over all choices of paths y, the second sum is over all paths y' diverging from 1, O! and 

p are arbitrary constants, d is the lower bound on rnax(d& ), and de(y,y') is the Euclidean 

distance between paths y and y'. 

2 DERIVATION OF THE BOUND 

Forney [2] set forth clearly in six steps a bounding technique which owes much 

to Chernoff [7], Gallager [8], and Viterbi [9]. We use only the first four steps. 

2.1 Step 1: Define a random ensemble 

The random ensemble is the set of all "non-linear, time-varying codes" associ- 

ated with a specific signal constellation and a specific trellis. 
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2.2 Step 2: Obtain a bound of the moment-generating function form: 

If the probability over all codes in the random ensemble that + is smaller than 

some d is less than 1, there must exist at least one code for which dfrcL is actually 

larger than or equal to d. This can be written as follows: 

P (df,,(code) < d) < 1 + there exists a code such that dpLL 2 d. 
all c o h  

Furthermore, 

+-(code) 2 d if T,~(code,d) < 1, 

where 

Hence, 

there exists a code such that 2 d if cap* C 

2.3 Step 3: Configuration counting 
, 

Equation (1) contains an average over all codes of a function 

depends on the codewords of a code. Shannon's random coding technique switches 

these two operations and obtains an average over all codewords of another function 

fq, where fw is an average over all the codes (it can be viewed as the probability 

that a codeword is chosen). Here, the codewords are the paths through the trellis. 

"Configuration counting" determines the number of Occurrences of a path in all the 

codes. This enables us to calculate f&. 

2.4 Step 4: Reduce the above bound to a usable form (Gallager's Lemma) 

Step 4 (see Gallager [8]) puts the bound in its final form. 



3 STATEMENT OF THE BOUND 

Given a signal constellation S, there exists a (k, v0) trellis code with minimum 

Euclidean distance d& such that: 

where 

a and p are parameters that enable us to optimize the bound, 

s and s' are signal points from S ,  

between s and s', 

p(s )  is a probability distribution on S, and 

4 USING THE BOUND TO EVALUATE TCM SCHEMES 

4.1 viewed as a function of vo: 

The lower bound on dfrcc increases with the constraint length vo. Bounds on the 

free Hamming distance of binary convolutional codes have usually been expressed as 

functions of vo. This leads to asymptotic, exponentially tight bounds on max(+ee ) for 

large vo, but the bounds are not tight for small constraint lengths. In the following 

paragraphs we compare constellations at a given rate R of information bits per dimen- 

sion and at a given average energy Eays per dimension. 
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4.1.1 The effect of increasing the number M of signals on ma(+,, ) (same rate R, 

same dimensionality, same average energy E,,&: 

Increasing the number M of signals increases ma(+,,,, ) because it provides more flexi- 

bility in the mapping of signals to trellis branches. In particular, this flexibility gen- 

erates some codes with larger distances between correct and incorrect paths than codes 

generated with fewer signals. Note that increasing M, while keeping k constant, 

lowers the code rate R, E - k 
lOgzM ' 

4.1.2 The effect of increasing the signal set dimensionality on max(df,, ) (same rate 

R,  same number of signals M, same average energy E,,,&: 

Increasing the signal set dimensionality increases max(+,, ). We obtain higher dimen- 

sional schemes by using a basic one- or two-dimensional constellation for several 

transmission intervals [4]. Fig.1 shows an example of an L-dimensional scheme (L 

uses of 4-PAM, L=1,2,3, and 4). For a given constraint length vo, higher dimensional- 

ity yields a larger max(dfiee), and as vo increases the curves diverge and the gain goes 

to infinity. However, the error coefficient increases with dimensionality [lo], which 

may cancel the gain from the increased dfiee at moderate decoded bit error rates. 

4.1.3 The effect of changing the modulation scheme on dfiee (same dimensionality, 

same number of signals M, same average energy E,,, same rate R):  

Changing the modulation scheme affects max(dfie,). For example, rectangular constella- 

tions yield a larger max(+e,) than constant envelope constellations. Fig.2 shows M- 

PSK vs. M-QASK, and suggests that a dfiee penalty is associated with constant 

envelope modulation. 
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4.1.4 The effect of uncoded bits or parallel transitions on max(+,,) when the signal 

constellation is "mapped by set partitioning": 

Uncoded bits generate parallel transitions in the trellis and limit max(dPee ), since dfrer 

cannot be larger than the minimum distance between parallel transitions (the minimum 

distance within the subsets created by "set partitioning"). Fig.3 shows that for 8-PSK, 

1 uncoded bit increases for small constraint lengths. Although the bound is not 

tight, its slope agrees with the best known codes constructed [3]. For large vo, we see 

that 1 uncoded bit limits the achievable dfie,. 

4.2 Comparison of the lower bound on 

known codes [3]: 

with an upper bound [5,6] and 

We expect upper bounds to be tighter than our lower bound for small constraint 

lengths, and our lower bound to be tighter for large constraint lengths (this is analo- 

gous to the way bounds on binary convolutional codes behave). The lower bound is a 

"Chernoff type" bound and therefore is exponentially tight when vo is large. Fig4 

shows that the upper bound is tighter than the lower bound for small constraint 

lengths. But the lower bound becomes tighter as vo increases. The slope of the lower 

bound gives a precise indication of the asymptotic rate of increase in max(dfree). 

Finally, the lower bound guarantees the existence of codes that can achieve a certain 

djree. 

5 CONCLUSION 

We have obtained a random coding lower bound on ma(+,,). It takes into 

account the actual Euclidean distances between points in the channel signal constella- 

tion. As with any "Gilbert" bound, it is most useful as an asymptotic bound. It pro- 

vides a means of comparing the asymptotic performance of different modulation 

schemes, and proves the existence of codes that achieve dPee larger than the bound. 
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ABSTRACT 

In this paper, we investigate the use of unit-memory and partial-unit- 

memory trellis codes along with multi-dimensional h4PSK modulation. A 2L- 

dimensional (L 2 2) MPSK signal set is obtained by forming the Cartesian 

product of L 2-dimensional MPSK signal sets. 

A systematic approach to partitioning the signal set is introduced, fol- 

lowed by the trellis code construction and a discussion of encoder implementa- 

tion. Codes with coding gains of up to 1.9 dB over those achievable with 

trellis coded 2-dimensional modulation are obtained. 
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I. Introduction 

Since the publication of the paper by Ungerboeck [l], -- trellis coded modulation 

(TCM) has become a very active research area [2-81. The basic idea of TCM is that 
by trellis coding onto an expanded signal set (relative to that needed for uncoded 
transmission), both power and bandwidth efficient communication can be achieved. 

TCM can be classified into two basic types, the lattice-type (e.g., M-AM, M- 
QASK) and the constant-envelope-type (e.g., MPSK). The latter has a slightly lower 

power efficiency compared with the former but is more suitable for nonlinear band- 

limited channels. In any TCM design, partitioning of the signal set into subsets with 

increasing intra-subset distances plays a central role. It defines the signal mapping 

used by the modulator, and provides a tight bound on the Euclidean distance (ED), 

which permits an efficient search for optimum codes. For lattice-type TCM, Calder- 

bank and Sloane [3] have made the important observation that partitioning the signal 

set into subsets corresponds to partitioning a lattice into a sublattice and its cosets. 

This work was supported by NASA Grant NAGS-557 and by NSF Grant ECS84-14608. 

* Formerly with the Department of Electrical and Compter Engineering, Illinois Institute of Technology, Chicago, 
IL. 
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Forney [4] has developed a method, called the "squaring construction", of partitioning 

higher dimensional lattices from a lower dimensional lattice by using a coset code. 

However, his approach does not apply to constant- envelope-type TCM. 

In this paper, we investigate unit - - memory (UM) and partial - unit - memory 

(PUM) trellis coded 2L-dimensional (L 2 2) QPSK (or L*QPSK) and 8PSK (or 

L*8PSK) modulation. The L*MPSK signal set is generated simply by repeating an 

MPSK signal set L times. Therefore, the 2L-dimensional MPSK signal set S, is the 

Cartesian product of L 2-dimensional MPSK signal sets S2, i.e., 

Sz = S2 x S2 x * x S2 (L times). SU, has some interesting features which are not 

found in S2. Codes with higher effective information rates and larger coding gains are 

possible due to the increased flexibility of coding in S,. 

In section n, we give a brief description of the structure of a trellis encoder and 

of the means of measuring trellis code performance. Section 111 presents results for 

UMPUM trellis coded 2L-dimensional QPSK modulation. In this case, the Hamming 

distance (HD) is proportional to the squared Euclidean distance (ED2), and the TCM 
design is equivalent to the design of a conventional binary convolutional code. 

For 8PSK modulation, HD and ED2 are no longer proportional and Ungerboeck's 

concept of "mapping by set partitioning" must be invoked. In section IV, set partition- 

ing of the 2L-dimensional 8PSK signal set into subsets is shown to be equivalent to 

partitioning the L-dimensional binary vector space C = (0, l}L into a subcode and its 

cosets. 4s examples, we give the signal set partitions for 2, 4, and 8-dimensional 
8PSK modulation. Some trellis coded multi-dimensional 8PSK modulation design 
examples are given in section V. In section VI, we illustrate the procedure for imple- 

menting the TCM designs through the use of binary convolutional encoders. The 

UMPUM trellis coded 2, 4, and 8-dimentional 8PSK modulation designs are specified 

by listing the code generator matrices. 

11 General Description of Trellis Coded Modulation 

The first general description of TCM was given by Forney et. al. [2] and is 

shown in Figure 1. The k = kl + k2 information bits are split into a kl-tuple and a k2- 

tuple. The kl-tuple is encoded by a binary encoder of constraint length v, resulting in 

nl coded bits. The nl bits are then used to choose which subsets are to be used for 
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each symbol. The remaining k2-tuple is not coded but merely selects points from the 

chosen subsets, with the signal set being large enough to accommodate all incoming 

bits. Thus, the implementation of the TCM scheme is reduced to synthesizing the 

(nl, kl,v) binary encoder. 

For the trellis coded multi-dimensional MPSK modulation discussed in this paper, 

the subset is selected jointly by the nl output bits and some of the k2 uncoded bits, as 

indicated by the dotted connection in Figure 1, while the signal points are selected 

only by the k2 uncoded bits. Hence, in the implementation of trellis coded multi- 

dimensional MPSK modulation scheme, the (n, k, v) convolutional encoder outlined by 

the dotted box, with n = nl + 4 and k = kl + b, must be considered. 

Once the constraint length v and the set partitioning is determined, the free ED2, 

denoted df, of the TCM scheme is uniquely determined by the trellis structure and the 

number of parallel transitions between trellis states. The number of parallel transitions 

equals 2', which also equals the number of signal points within each subset. The 

intra-set ED2 of the subset places an upper bound on 4. Generally speaking, the 

fewer the number of points within the subset, the larger the intra-set ED2. Therefore, 

reducing the number of uncoded bits can result in a larger d;. However, this may 

also lead to increasing the constraint length v, and hence the decoder complexity, in 
order to reduce the connectivity of the trellis. 

The p e r f o m c e  of TCM is measured in terms of its effective information rate 

Rq (bitsldimension) and its error probability. For rate R = kln coded 2L-dimensional 

MPSK modulation, 

Rg = k12L bitsldimension. (1) 

Let 4 be the free ED2 of the code normalized by the symbol energy E, at the 

modulator output. At high signal-to-noise ratios, an asymptotically tight expression for 

the -- event error probability P(E) is 
I 

where M(dj)  is the multiplicity of the error events with squared distance dj from the 

correct path and No is the single-sided noise power spectral density. Since LE, = kEb, 
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where Eb is the energy per information bit, we have 

Let d$f and Rrd be the normalized free ED2 and the effective information rate of the 

reference system, respectively. The coding gain y over the reference system, from (2), 

is defined as 

For example, for QPSK modulation, d&= 2 and R,d= 1 bivdimension; for 8PSK 

modulation, d& = 2- f i  = 0.586 and Rr4 = 1.5 bits/dimension, and the coding gains 

are 

and 

respectively . 

111 UM and PUM Trellis Coded L*QPSK Modulation 

Combining L QPSK signals to obtain a modulation signal in 2L dimensions is 

achieved by using a QPSK modulator L times, i.e., by time-sharing the channel. This 
section is devoted to a discussion of the coding gains achievable with 2L-dimensional 

QPSK signals combined with UM and PUM convolutional codes. 

Figure 2 illustrates the 2-dimensional QPSK signal set along with a commonly 

used two bit mapping. By combining L of these signal sets, we create a set of 4L sig- 

nals in 2L dimensions, and each signal consists of L QPSK signals. Let a and b be 

two signals in the 2L-dimensional space. Let - V and - W be the two 2L-dimensional 
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binary representations associated with Q and b, respectively. Let HD(V,W) -- denote the 

HD between - V and - W, and ED2(a,b) denote the ED2 between a and b. It can be seen 

from Figure 2 that 

ED2(a,b) = 2 - HD(_V, - W). 

Consequently, maximizing the free ED2 is equivalent to maximizing the free HD, and 
coded ;?L-dimensional QPSK modulation reduces to conventional binary convolutional 

code design. 

In most applications of (n, k, v) convolutional codes, k and n are taken to be rela- 

tively prime, i.e., GCD(n, k)  = 1. However, codes with GCD(n, k)  >1 can sometimes 

achieve a larger free HD for a given state complexity due to the increased flexibility 

available when coding more bits at the same time [9,10]. We summarize in Table 1 

the gains achievable by taking GCD(n, k )  > 1, where the reference system is the best 

code with GCD(n, k )  = 1 and with the same state complexity. The codes in Table 1 
are taken from [9, lo]. 

It is seen that two of these gains (0.67dB and 0.62dB) are obtained for odd n. 

These codes do not fit the L*QPSK signals we propose, unless we allow some time 

delay and links between two successive sets of output bits. All other gains correspond 
to even n. Note in particular the 1.25 dB gain obtained for encoder constraint lengths 

v = 1 and 3 by using rate 2/4 and 4/8 codes instead of the usual rate 112 code. These 

results encourage us to apply these codes to L*8PSK modulation. 

IV Partitioning the 2L-Dimensional8PSK Signal Space 

The remainder of the paper deals with multi-dimensional 8PSK signals. In this 

section, we present a method for partitioning the 2L-dimensional 8PSK signal space 

into subsets. This approach simplifies both the construction of trellis coded multi- 

dimensional 8PSK modulation and the corresponding binary convolutional encoder 

design. The set partitioning of the 2L-dimensional 8PSK signal space into subsets can 

be described as partitioning an L-dimensional binary vector space into a subspace (or a 

linear block code) and its cosets. Therefore, we first examine some of the properties 

of partitioning an L-dimensional binary vector space. 
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L I 

A. Partitioning a binary vector space 

The L-dimensional binary vector space is given by C = {O,l}L. Let Ci be an 

(L, L-i), 1 5 i L, binary linear block code specified by the (L-i) x L generator 
matrix Gi, The 2i-way binary vector space partition, C/Ci, divides C into Ci and its 

2' - 1 cosets, Tl(i), T2(i) , . . . , T*i-I(i). Define IC/C;) as the set of coset leaders for 

Ci, T (i) ,T2(i), . . . ,T2i- (i), i.e., 

WCiI = {b,tl(i), t2(i), * 9 tp -1(i)}, (6) 

where to, the all-zero vector, is the coset leader of Ci, and t,(i), j = 1,2, , . . . , 2'-1, is 

the coset leader of T&i) [ll]. The code Ci and its coset T,(i), j = 1,2 , . . . , 2'-1 are 

related by 

TLi) = Ci + ti(i). 

C = Ci + IC/CiI = {C, Tl(i), T2(i) , . . . , T2i-1(~]}. 

(7) 

From (6) and (7), we see that the 2'-way partition C/Ci can be expressed as 

(8) 

Therefore, the partition C/Ci can be determined from Ci and IC/CiI. 

Now we fom'an (L, L-i-1) binary linear code Ci+l such that Ci+l c Ci, i.e., Ci+l 
is a subcode of Ci. Then Ci/Ci+l is a 2-way partition, and it divides Ci into Ci+t and 

its coset Ti(i+l). C/Ci+, is a Zi+'-way partition which partitions C into CiCl and its 

2'+'-1 cosets, Tl(i+l), T2(i+l) , . . . , T2i+1-l(i+l). Therefore, C/Ci/Ci+l forms a 2'/2- 

way partition chain. The relationships between the partitions C/Ci, Ci/Ci+l, C/Ci+, 

and the partition chain C/Ci/Ci+l are depicted in Figure 3. 

Let ICi/Ci+ll and IC/Ci+lI be the two sets of coset leaders associated with the par- 

titions CJCi+l and respectively. That is 

ICi/Ci+ll = {to, tl(i+l)), 

and 

JC/Ci+lJ = {to, tl(i+l), t2(i+l) , . . . , t2i+1-,(i+1)}. 

IC/Ci+,I can be found from IC/CiI and ICJCi+1) as follows: 

t*,(i+l) = tj(i), j = 1 , . . . , 2i-1, 

t2j+l(i+1) = t,(i) + tl(i+I), j = 1 , . . . , 2' -1. 
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Since 

and 

C = Ci+l + lC/Ci+ll = {C;+l, Tl(i+l), T2(i+l) , . . . , T2i+i_l(i+l)}, 

knowing IC/CiI, Ci,  and Ci+l, we can completely determine the partition C/Ci+, and 

the partition chain C/Ci/Ci+,. In general, the 2'+'-way partition C/Ci+, and the parti- 

tion chain C/C,/C2/ ... /Ci/Ci+, can be determined from C 1 ,  C2 , . . . , Ci ,  and Ci+l,  

where Ci+l c Ci c c C2 c C1.  

Let HDmin(Ci) be the minimum HD of Cp Then we have 

* = HD~n(T2i-1(i)). In what follows, we will relate the HD-(Ci) = HD-(Tl(i)) = * 

binary vector space partition with the 2L-dimensional 8PSK signal space partition. 

B. Partitioning the two-dimensional 8PSK signal space 

The 2-dimensional 8PSK signal space is shown in Figure 4, along with a 3 bit 

binary mapping (il, i2, i3) for each signal point. The optimal partition of the 2- 
dimensional 8PSK signal space S, = (0, 1, 2, 3, 4, 5 ,  6, 7), given by Ungerboeck [l], 

is illustrated by the partition tree shown in Figure 5 ,  where 

Po = {SZ I i3 = 0) = {Qo = (PO I i2 = 0), Q ,  = (PO I i2 = l)}, 

i.e., 

P I  = IS2 I i3 = 1) = {Q'o = (P1 I i2 = 0), Q', = (P1 I i2 = l)}, 

Let ED$,( ) denote the minimum intra-set ED2. Then we see that 

ED&(&) = & = 2-4, 

ED&(Po) = ED&(P1) = A: = 2, 
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ED2 rmn a (ei) = ED2-(Q’i) = 2Af = 4, i = 0, 1. 

We also note that the minimum ED2 between two subsets is related to the minimum 

HD of their respective subscripts by 

EDLn(Pi , P,) = HDhn(i, J)A$ 

E&(Qi , Q j )  = HD-(i, ~ l * A f ,  

(10.1) 

(10.2) 

(10.3) E&n(Q’i 9 Q’j) = HD,n(i, J~.A?, 

for i,j = 0, 1. 

The above observation is very important and forms the basis for partitioning the 
2L-dimensional 8PSK signal space. It enables us to relate the signal space partitioning 

into subsets with the partitioning of a binary vector space into a subspace (subcode) 

and its cosets. 

C. Partitioning the four-dimensional 8PSK signal space 

The 4-dimensional 8PSK signal space is formed from the Cartesian product of 

two 2-dimensional 8PSK signal spaces, Le., S4 = S2 x S, = (PO , 

The first level partition. First, we partition S4 into two subsets A l  and A2 such 

that their minimum intra-subset ED2 is maximized. S4 can be rewritten as 

s4 = (Po, = (Po x Po, Po x P,, P1 x Po, P ,  x PI). (1 1) 

Similarly, 
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Now consider partitioning the 2-dimensional binary vector space C = (0, 1}2 into 

a (2, 1) linear block code C1 and its coset Tl(1). Let C1 be generated by the genera- 

tor matrix G1 = [l l]. The 2-way partition C/C1 divides C into C1 and its coset 

TI( 1). That is 

C = (0, 1}2 = (00, 01, 10, 11) = {Cl, Tl(l)}, (16) 

Ti(1) = tl(1) + C1 = (01) + C1 = (01, 10). (18) 

Obviously, 

Comparing (11) - (15) with (16) - (20), we see that the correspondence between the 

signal space partition and the binary vector space partition is one-to-one. Knowing C1 

and T1(1), the two signal subsets A1 and A2 can be obtained by mapping the elements 

of C1 and Tl(1) into the subscripts of Pi x P,, as indicated by (12) and (13). To sim- 

plify the notation, we denote the signal space partitioning at this level by 

C/Ci: GI = [I 11. 

The second level partition. Now we partition A, and A2 into subsets B,, B2, B3, 

and B4, respectively. Let C2 be a (2, 0) linear code, Le., C2 = (00). The 2-way parti- 

tion C1/C2 divides C1 into C2 and its coset T1(2). Therefore, C/C2 is a 4-way parti- 

tion which divides C into C2 and its three cosets,T1(2), T2(2), and T3(2) and C/Cl/C2 

forms a 2/2-way partition chain. The partition chain C/Cl/C2, along with the 2-way 

partitions C/C1, C1/C2 and the 4-way partition CK2, is shown in Figure 6(a). Note 

that C1 = {C,, Tl(2)). Tl(1) = (T2(2), T3(2)), and HD,ii,(C,) = HDh(Tj(2)) = 00, 

j = 1, 2, 3. Consequently, we have 

Al = (B1, B2), where B1 = Po x Po, B2 = P1 x Pl; 

and 

E D L ( B j )  = EDL,(Po) = E D L ( P 1 )  = A: = 2, j = 1, 2, 3, 4. 

We denote the partitioning at this level by C/C2 : C2 = (0 0). 
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The third level partition. To partition the subsets at level two, we use the fact 

that Po = (eo, Ql) and P l  = (Q’o, e’,). Then the subsets B 1 ,  B2, B3, and B4 can be 

rewritten as 

Observing the similarity with the partition at level one, and using (10.2), B ,  can be 

partitioned into B1 = {C,, C2)  according to the binary partition rule C/Cl : G1 = [ l  11, 

where 

Applying the same rule to B2, B3, and B4, respectively, we obtain 

and 

EDL,(Cj) = HD-(Cl).Ay = 2Af = 4, j = 1, 2 , . . . , 8. 

Since the same binary partition rule C/Cl : G1 = [ l  11 has been used four times, 

we denote the set partitioning at this level by 4 x [C/C3] : G3 = [ l  11. (Even though 

C3 = C1, the subscript 3 is used here to indicate the partition level.) 

The fourth level partition. Similar to the second level partition, using the rule 

C/C2 : C2 = (0 0}, we can partition Bl = {C,, C2} into D, = Qo x Qo, D 2  = Ql x Q, ,  

D, = Qo x Ql, and 0 4  = Ql x Qo, with C1 = {Dl, 0 2 )  and C2 = {D3,  D4). Applying 
the same rule three more times on B2 = {C3, C4}, B3 = {C5, c6}, and B4 = {C7, C,}, 

respectively, we obtain the subsets D,, D6, , D16, and 

E&,(Dj) = EDL,(Q,-J = 2Af = 4, j = 1, 2 , . . . , 16. 

The set partitioning at this level is denoted by 4 x [C/C4] : C4 = (0 0). 
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The set partitioning can be carried out further by splitting 

respectively, into two parts (i.e., Qo = (0, 4), etc.). But we will 
Qo, Qi, Q’o and Q’i, 

stop here since only 

the subsets obtained above will be used in the code constructions of section V. The 

4-dimensional 8PSK signal space partition is summarized in Table 2, where we use 

N ( e )  to designate the number of signal points within a given subset. In Figure 6(b) we 

show the corresponding partition tree. 

D. Partitioning the six-dimensional 8PSK signal space 

The above technique can be generalized to partition higher-dimensional signal 

spaces. The 6-dimensional 8PSK signal space is given by S6 = S; = (Po , P1)3, and it 

can be partitioned according to the 3-dimensional binary vector space partition. Tables 

3(a) and 3(b) show two 6-dimensional 8PSK signal space partitions. To read these 
tables, we only need to understand the corresponding binary vector space partition. 

We show this by going through the partition given in Table 3(a). From Table 3(a), we 

first find the binary linear block codes used in the binary vector space partitions: 

c1 : (3,2) code, G~ = [h :I, m-(cl) = 2; 

C2 : (3, 1)  code, G2 = [O 1 11, H D ~ & )  = 2; 

C3 : (3, 0) code, C3 = (0 0 01, HDdn(C3) = -; 

and C4 = C1, C5 = Cp Let C = (0, lQ, the 3-dimensional binary vector space. We 

can see that C3 c C2 c C1 c C. Therefore, C/C1, C1/C2, and C2/C3 are 2-way parti- 

tions, C/C2 and C/C3 are 4 and 8-way partitions, respectively, and C/Cl/C2/C3 is a 

2/2/2-way partition chain. This partition chain is shown in the upper part of Figure 7. 
From (8) we see that, to determine T,(i), j = 1, 2 , . . . , 2‘-1, we need to know 

IC/CJ = {to, tl(i) , . . . , t2i-1(0}, the set of coset leaders. Thus, from (9.1) and (9.2), 

knowing C1, C2, . . . , Ci, the set of coset leaders IC/CiI, or equivalently 

Tl(i), T2(i) , . . . , T2i-l(i), can be determined iteratively from to and tl(1). 

After finding Ci, Tl(i) , . . . , T2i-i(i), the signal subsets at partition level i can be 

found by mapping the codewords of Ci, Tl(i) , . . . , T2i-1(i) into the subscripts of 

Pil x Pj2 x Pj3. For example, at partition level 3, we have 

C/C3: C3 = (0 0 0}, T1(3) = (0 1 l}, Tz(3) = ( 1  0 I}, T3(3) = ( 1  1 O}, 
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Then the eight signal subsets C1, C 2 , .  . . , Cg are given by C1 = {Po x Po x Po}, 

c, = {Po x P ,  x PI}  , * *. 

The minimum intra-subset ED2 at level i equals 

ED&(-) = min {ED&(P~) ,  H D ~ ~ ( C J - ~ } ,  i = 1, 2, 3. 

Since ED&(Po) = 2 > HD-(Ci) ( 2 4 )  for i = 1, 2, and ED&(Po) = 2 

< HD-(C3) ( 2 4 )  = 00, we have 

ED&(A~> = HD-(c~).& = 2(2-@, j = i , 2 ,  

ED,. - I  (B.)  = HD&(C~).& = 2(2-*), j = 1, 2, 3,4,  

and 

At partition level 4, we express C,, C2 , . . . , C8 in terms of Qo, Q,, or Q’,, 

e.g., C1 = <eo, &I3, C2 = (eo, Qi) x (Q’o, * * . Now Cj, j = l , 2 ,  . . . ,  8, 
corresponds to C = (0, lQ. The signal subsets at partition levels 4 and 5 can be 
found by applying the binary partitions C/C4, and C/C5 to every Cj, j = 1, 2 , . . . , 8, 

as indicated by the partition chain C/C4/C5 shown in Figure 7. We can see from (10.2) 

and (10.3), that 

EDL(Di)  = min {EDL(Qo) ,  HD-(C4).A?} 

=HDe(C4)*A:=4, j =  1 , 2 ,  . . . , 16, 

ED&(Ej) = min {EDLJQO), HD~,(C5)*A:}  

= HD&(C5)-A: = 4, j = 1, 2 , . . . , 32. 

E. Partitioning the eight-dimensional 8PSK signal space 

The 8-dimensional 8PSK signal space is given by Sg = (Po, The signal 

space partition is shown in Table 4, where the following binary codes are used: 

C1 : (4,3)code, G1= 0 1 0 1 , HDh(Cl)=2; Kl 
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C2 : (4, 2) code, G2 = 7 9, HD~,,(C2) = 2; 

C3 : (4, 1) code, G3 = [ 1 1 1 1 1, H D ~ J C , )  = 4; 

C, = C5 = C,, C6 = C2, and C7 = C,. The binary vector space partition rule is shown 

in Figure 8. 

The signal subsets at partition level i = 1, 2, 3 are obtained by mapping the code- 

words of Ci, or Tj(i), into the subscripts of Pi, x Piz x Pj3 x Pj,. For instance, at parti- 

tion level 3, the binary code C3 and its cosets are C3 = (0  0 0 0, 1 1 1 l}, T1(3) = 

{ 0 1 0  1, 1 0  1 0  }, - e. Then the corresponding signal subsets are C ,  = 

{Po x Po x Po x Po, P, x P, x P, x PI}, 
Po}, * * *. 

c, ={Po x P1 x Po x P,, P, x Po x PI x 

At partition level 4, we have two options. In the first approach, the signal subsets 

can be obtained simply in terms of Po and P,, e.g., Dl = Po x Po x Po x Po, D, = 

P, x P1 x P1 xP1, - *. However, in this case ED&(Dj) = A! = 2, j = 1, 2 , . . . , 16. 
In the second approach, we first express Ci, j = 1, 2 , . . . , 8, in terms of Qo, Q,, or 

Q’o, Q’,, e.g., C1 = {(Qo, , (Q’o, e’,),}, * * -. Therefore, they correspond to the 
binary vector space {C, C} ZC, as shown in Figure 8. In Figure 8, we perform the 

partition 2[C/C4] (note that C4 = Cl), which divides 2C into {C,, C,} 3 2C1 and 

(T1(1), Tl(l)} =2T1(1). Then the signal subset Dp j = 1, 2 , . . . , 16, is obtained by 

mapping the elements of 2C1 or 2T1(1) into the subscripts of Qj, x Qjz x Qj3 x Qj4, 

Q), x Q), x x Q;, , - * .. In this case, ED2(Dj) = 4 4  = 4(2-v‘2) > AT = 2. The 

rest of the set partitioning can be seen from Table 4 and Figure 8. 

The signal space partitions of Table 2, Tables 3(a) and 3(b), and Table 4 are not 

complete, i.e., they can be partitioned further in a similar way. However, only those 

subsets which are used in the code constructions to follow are included in these tables. 

V. Trellis Coded Modulation Design 

Having introduced the signal set partitioning in the last section, we now show 

how to construct TCM schemes with multi-dimensional 8PSK signal sets. 

Trellis coded modulation has been mostly restricted to the case where the code 

rate R = (n-l)/n. In our code constructions, however, we remove this condition by 
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considering code rates R = (3L-i)/3L, L = 2, 3, 4, i = 1, 2 ,  . . . , such that the 

effective information rate R g 2  1 bitldimension. The construction procedures are 

illustrated by three examples with 4, 6, and 8-dimensional 8PSK modulation, respec- 

tively. Several other codes are tabulated in the next section. 

A. Two-state R = 516 trellis coded 4-dimensional 8 PSK modulation 

The 64 4-dimensional 8PSK signals are partitioned according to Table 2. Since 

R = 3 6 ,  there are 25 = 32 transitions to and from each state. Because v = 1 (two 

states), the only possible trellis structure is shown in Figure 9. Each state has two sets 

of 16 parallel transitions leaving and entering it. The signal subsets B, ,  B2, B3, and B, 

each contains 16 signal points. Therefore, they are assigned to the parallel transitions 
in the trellis, as shown in Figure 9. Since ED&(B1, B2) = EDLn(A1) = 2 4 ,  the 

minimum ED2 on the diverging branches is 2A$ The minimum ED2 on the remerging 

branches is EDLn(B1, B3) = ED&,(.!$) = A$ Thus a 2-level error event has a total dis- 

tance ED2 = 3 g  = 1.757. Since this is smaller than that of the one-level exror events, 

ED&(&) = A: = 2, and of all longer error events, we see that d; = 3 4  = 1.757, 

Let M(B2) and M(B3) be the number of points in B2 and B3 with distances 2 4  

and from the zero point in B,, respectively. Then the multiplicity of error events 

with distance from the all zero path is M(@ = M(B2).M(B3). A close examination 

of B, and B3 reveals that M(B2) = 4 and M(B3) = 2. Therefore, M(d!) = 4 x 2 = 8. The 

coding gains of this code over 8PSK and QPSK, from (4) and (S) ,  are Y8pSK = 3.977dB 

and yQpSK = 0.407 dB, respectively. The effective information rate is Refi = 5/4 = 1.25 

bi ts/dimension. 

B. Four-state R = 8/9 trellis coded 6-dimensional 8PSK modulation 

This time we have two different signal space partitions. First consider partition 11 

given in Table 3(b). Since R = 8/9, there are 28 = 256 transitions to and from each 

state. Because the trellis has four states, i.e., v = 2, two trellis structures must be 

examined, one with two sets of 128 parallel transitions and one with four sets of 64 
parallel transitions. It turns out that the former is the best arrangement, with the subset 

assignments shown in Figure 10. There are two paths with d; = 3 4  = 1.757, one of 

one level, the other of three levels. These are shown by the highlighted transitions in 
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Figure 10. The coding gains are YgpSK = 4.257 dB and y Q p s ~  = 0.687 dB, respectively. 

We can show that M(d$ = M(B1) + M(B2) x M(B3) x M(B2) = 8 + 2 x 2 x 2 = 16, 

and R g  = 816 = 1.33 bitddimension . 
If partition I of Table 3(a) is used instead, the best trellis structure will be the one 

with four sets of 64 parallel transitions. It also achieves d j  = 3 4  = 1.757, but with a 

larger path multiplicity M(d;) = 24. 

C. Eight-state Rate = 9/12 trellis coded 8-dimensional 8PSK modulation. 

The 8-dimensional 8PSK signal space partition is given in Table 4. Since 

R = 9/12, there are 2’ = 512 transitions to and from each state and v = 3 implies that 

three trellis structures must be exahined. After some trial-and-error, we arrived at the 
optimal structure and the subset labeling given in Figure 11. Each state has four sets 

of 128 parallel transitions branching from it. The minimum ED2 is d j  = 2A7 = 4, 

which is achieved with a one-level path, and all longer paths have ED2 larger than 4. 

Thus M(df)  = M(E1) = 28, y g p s ~  = 7.092 dB, ~ Q P S K  = 3.522 dB , and R& = 918 = 

1.125 bitstdimension. We note that this eight-state code has the same coding gain as 

eight-state R = 213 coded 8PSK [l], yet has 12.5 percent greater bandwidth efficiency. 

The same procedure can be applied to construct codes with various rates and 
numbers of dimensions. However, we now turn to the encoder implementation in the 

next section. 

VI Encoder Implementation 

Once the trellis and the branch labeling is determined, the actual encoder can be 

synthesized according to the set partitioning and the general encoding scheme shown 

in Figure 1. We adopt the mapping shown in Figure 4. The procedure for synthesiz- 

ing a binary convolutional encoder from the trellis will be illustrated by two examples. 

Example 1: 

We first determine the encoder implementation for two-state R = 5/6 trellis coded 

2*8PSK modulation. The encoder accepts 5 bits and forms two 3-bit output symbols, 

( b,, b2, b, ) and ( b4, b5, b, ). These two symbols are then used to serially drive the 

8PSK modulator according to the mapping: ( b,, b2, b3 ) + ( i,, i2, i, ), 
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( b4, b5, b6 ) + ( il, i2, i3 ). From the signal space partition of Table 2, we obtain the 

mapping from subsets B1, B2, B3, and B4 to the encoder output bits bl, b2, b3, b4, b5, 

and b6 shown in Table 5. For each subset, bl ,  b2, b4, and b5 can be either 0 or 1. 

This means these bits must be uncoded (the trellis of Figure 9 has 16 parallel transi- 
tions, which corresponds to 4 uncoded bits). Hence k2 = 4, kl = 1, nl = 2 (see Figure 

1). The values of 4 and b6 for each subset Bi are simply the binary (2, 0) code C2 
and its cosets T1(B),  T2(B), T3(B), obtained from the binary vector space partition 

C/C2 : C2 = { 0 0 ] (see Table 2). These two bits are the nl = 2 output bits of the (2, 

1, 1) encoder. Now the problem of synthesizing a (6, 5 ,  1) encoder is reduced to syn- 

thesizing a (2, 1, 1) encoder according to the two-state trellis shown in Figure 12(a). 
The (2, 1, 1) encoder is given in Figure 12(b) and the (6, 5 ,  1) encoder is shown in 

Figure 12(c). This code can be represented by the generator matrices 

From the binary encoder shown in Figure 12(c), we see that the two coded bits b3 

and b6 are used to select a subset, and the four uncoded bits bl, b2, b4, and b5 are used 

to select a signal point within the selected subset. 

Example 2: 

In this example, we show how to synthesize a (9, 8, 2) binary convulutional 

encoder for the four-state R = 8/9 trellis coded 3*8PSK modulation scheme in section 

V. The encoder has eight inputs and three 3-bit symbol outputs, 

(b l ,  b2, b3), (b4, b5, b6), and (b7, bs, bg), to serially modulate the eight phases accord- 

ing to the mapping: (bl, b2, b3) + (il, i2, i3) ,  (b4, b5, b6) + (il, i2, i3 ) ,  and 

(b7, b,, b9) + ( i l ,  i2, i3). Since the trellis of Figure 10 has 128 parallel transitions 

between states, there are seven uncoded bits, and kl = 1, k2 = 7, and nl = 2. 

The mapping from signal subsets B1,B2, B3, and B4 to the nine output bits 

b,,  b2 , . . . , b9 is shown in Table 6, which is obtained from the signal space partition 

of Table 3(b). From Table 6 we see that b l ,  b2, b4, b5, b7, and b8 can be either 0 or 1 

for all four subsets, so that these six bits must be uncoded bits. We take b3 to be the 
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7th uncoded bit. Note that b3 is also used to select a subset. Now we only need to 

consider the two coded bits b6 and bg and the uncoded bit b3. The state transition 

00 + 00 (Figure 10) corresponds to the subset B ,  and requires b3, b6, and b9 to be 

either OOO or 111 (Table 6).  To meet this requirement, we connect b3 to b6 and b9, as 

shown in Figure 13(a). Note that the output (b3, b6, b9) generates the (3, 1) binary 

linear code C2 The state transition 00 + 10 (Figure 10) corresponds to the subset B2 

and requires (b3, b6, b9) to belong to Tl(B) = C2 + ( 010 ) = { 010, 101 }, where 

(010) is the coset leader of Tl(B).  This is achieved by connecting point (1) in Figure 

13(b) to b6. Now consider the state transition 10 + 01 (Figure 10). This corresponds 

to the subset B3 and to Tz ( B )  = C2 + ( 001 ) = {OOl, 110}, where (001) is the coset 

leader of T2(B). Therefore, we connect point (2) in Figure 13(c) to bg. The state tran- 

sition 10 + 11 corresponds to the subset B4 and to T3(B) 

= C2 + (011) = C2 + (010) + (001) = (011, 100). Since points (1) and (2) have been 

connected to 66 and b9, respectively, no more connections are made. The encoder 

design at this stage is given in Figure 13(d). The connections corresponding to the 

other state transitions can be assigned in the same way. The complete encoder 

(including the uncoded bits b,, b2, b4, b,, b,, and b, ) is shown in Figure 13(e). The 

code generator matrices are 

’ 

-1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0  
0 0 1 0 0 1 0 0 1  
0 0 0 1 0 0 0 0 0  
0 0 0 0 1 0 0 0 0  
0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 1 0 0  
, 0 0 0 0 0 0 0 1 0  

0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 0  
LO 0 0 0 0 0 0 0 0 

- - 
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0  
-0 0 0 0 0 0 0 0 0, 

G 1 = O O O O O O O O O ’  

It should be noted that, for a given TCM scheme, the binary convolutional 

encoder design is not unique. In Figure 14, we show another encoder for the same 

TCM scheme considered in Example 2. 
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Several rate R = 516 and 416 trellis coded 2*8PSK modulation designs are listed 

in Tables 7(a) and 7(b), respectively. Rate R = 8/9, 7/9, and 6/9 trellis coded 3*8PSK 

modulation designs are shown in Tables 8(a), 8(b), and 8(c), respectively. Rate R = 

11/12, 10/12, 9/12, and 8/12 trellis coded 4*8PSK modulation designs are given in 

Tables 9(a), 9(b), 9(c), and 9(d), respectively. For each code rate and number of 
dimensions, only two, four, and eight-state codes have been constructed. 

VI1 Discussion and Conclusions 

From Tables 7(a) - 9(d), we see that trellis coded multi-dimensional 8PSK modu- 

lation provides a variety of effective information rates ranging from 1 biudimension to 

slightly less than 1.5 bits/dimension. These rates cannot be achieved by trellis coded 

2-dimensional 8PSK modulation. The coding gains are also encouraging. The two- 

state rate R = 4/6, 6/9, and 8/12 codes, have coding gains over uncoded 8PSK of 5.57, 

6.31, and 6.58 dB, respectively, while the coding gains over Ungerboeck’s two-state R 

= 213 trellis coded 8PSK are 0.88, 1.62, and 1.89 dB. Note that Ungerboeck’s four- 
state R = 2/3 trellis coded 8PSK, a remarkably good code, has a coding gain of 6.58 

dB over uncoded 8PSK, the same as R = 8/12 trellis coded 4*8PSK with only two 

states. 

The four-state and eight-state R = 416, 6/9, and 8/12 codes have the same or 

slightly smaller coding gains compared with the R = 2/3 codes. However, since the 

unit-memory and partial-unit-memory codes are byte oriented, they have potential 

advantages for applications such as concatenated coding [12]. Investigations into this 

application are currently in progress. 
I 

The rate R = 9 6 ,  8/9, 7/9, 11/12, 10/12, and 9/12 coded multi-dimensional 8PSK 

modulation designs have greater bandwidth efficiency than rate R = 2/3 coded 8PSK. 

As can be expected, they are less power efficient. Exceptions are the eight-state rate R 
= 7/9 and 9/12 codes. Their coding gains over uncoded 8PSK (6.98 and 7.09 dB, 

respectively) are almost equivalent to eight-state rate R = 2/3 trellis coded 8PSK (7.17 

a), yet they are 16.7% and 12.5% more bandwidth efficient, respectively. 

Finally, we note that the two-state rate R = 9 6 ,  819, and 11/12 codes have coding 

gains over uncoded 8PSK of 3.98, 2.50, and 2.63 dB, respectively. Their effective 

information rates of 1.25, 1.33, and 1.375 bits/dimension are close to 1.5 



- 1 9 -  

bits/dimension, the uncoded 8PSK effective information rate. We now look at the cod- 

ing gain achievable as the number of dimensions goes to infinity. For 2L-dimensional 
8PSK modulation, the signal space is given by Sz = (Po, P1f. We partition S ,  into 

S,  = (A19 A2) = (B1, B2, B3, B4), with A1 = (B1,Bz) and A2 = (B3, B4). For any 

L 2 2, there exists an (L, L-1) single-parity-check code C1 with H D ~ , , ( C , )  = 2. 

According to our set partitioning procedure, we see that ED2-(A1) = EDL,(A2) = 2A$ 

Also, since B1, B2, B3, and B4 are subsets of A ,  ' and A2, we have 

E D ~ - ( B ~ )  2 2 4 ,  i = 1, 2, 3,4. 

Now consider two-state R = (3L-l)/3L trellis coded 2L-dimensional 8PSK modu- 
lation. The trellis structure and the branch labeling are shown in Figure 9. For such a 

trellis, the one-level  ED^ is E D ~ , ( B ~ >  2 2 4 ,  the two-level  ED^ is 

ED&(B1, B2) + EDL,(Bl, B3) = EDL,(A1) + ED2,(SZ) = 3A6. Any longer path has 

ED2 larger than 3 4 .  Hence, 4 2 2 4  and Reg= (3L-l)/2L bits/dimension. The cod- 

ing gain over uncoded 8PSK is given by 

Thus, as the number of dimensions goes to infinity, we have 

and 

lim Reg = 1.5 bits/dimension. 
L + -  

These results are somewhat surprising, for we achieve at least a 3dB coding gain with 

no bandwidth expansion with only two-state trellis coding! It should be noted, how- 

ever, that as L goes to infinity, the path multiplicity also goes to infinity (although 

linearly, not exponentially). 
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Fig. 4 8PSK s i g n a l s  and a mapping 
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. 

0 4 2 6 1 3 7 

- 2 -  Tha 9-Aim~nsional  8PSK s i g n a l  space  
- -a- 

p a r t  i t ion t ree  . 
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c/cl : 

= E111 

V C 2  

Fig.  6 ( a )  The 2/2-way p a r t i t i o n  cha in  C/C1/C2 i n  

+lip 7-dim~nsi onal h i n a r v  vector  space. 
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2 s4 = (P P ) 0’ 1 

Fig. 6 ( b )  The 4-dimensional 8PSK signal space 
partition tree. 
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S t a t e  
0 

1 

S t a t e  
00 

10 

01 

11 

Fig.  9 Two-state R = 5/6 coded 2*8PSK 

2 2 
df = 2 A o  + = 1.757 

0 

b 

e 

Fig .  10 Four-s ta te  R = 8 / 9  coded 

2 2 
d f  = 3A0 = 1.757 

3*8PSK 
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E3E4E1E2 

E7E8E5E6 

E4E3E2E1 

E8E7E6E5 

State 
000 

100 

010 

110 

001 

i c i i  

011 

111 

2 2 df = 2A1 = 4 

Fig. 11 Eight-state R = 9 / 1 2  coded 4*8PSK 
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b 2  
b, i ./ b Y  

4 i w- 
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r b6 

Fig.  1 2  Procedure f o r  s y n t h e s i z i n g  a (6,  5 ,  1) encoaer  
t h e  two-state  R = 5/6  coded 2*8PSK of Example 1. 

f o r  
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**6b3 b9 

.-4 

al 
“2 - 
a 

a4 
a5 

3 

a6 

a8 
a7 

= {000,111) + B1 c2 

+ (010) 

1 .+ B2 

T2 (B) = C 2  + (001) 

= {001,110) + B3 

T3(B) = C 2  + (011) 

= {011,100) .+ B4 

Fig.  13 Procedure f o r  s y n t h e s i z i n g  a (9 ,  8, 2) encoder f o r  
t h e  f o u r - s t a t e  R = 8 / 9  coded 3*8PSK of Example 2. 
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1 bl 
a2 b2 

a 

3 a 

a4 x 
a5 . 

Fig. 14 Another (9, 8, 2) convolutional encoder for the 
four-state R = 819 coded 3*8PSK oE Example 2. 
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Table 1. Coding gains obtained for R = Wn, with GCM(k, n) > 1, coded 
multi-dimensional QPSK modulation 

PUM Improvement 
in HD 

Coding gair 

Y (dB) 

* 
* 413 

816 
817 
918 

1.25 
1.25 
0.58 
0.5 1 

* 
* 615 

14/12 
15/13 
16/15 

817 
12/10 
16/13 
18/16 
20118 
24/20 

0.79 
0.67 
0.62 
0.28 

0.58 
0.79 
0.90 
0.5 1 
0.46 
0.79 

1.25 
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8 

16 

Table 2. The 4-dimensional 8PSK modulation signal space partition 

8 

4 

Partition 

level 

s4  

A 

B 

C 

D 

4 I 16 

Partition rule 

C/C, : GI = [ I  I ]  

c/c, : c, = {O 0) 

4X[C/C2] : c, = (0 O} 

~ 

= 0.586 

2 A g =  1.172 

A: = 2 

2A: = 4 

2A: = 4 



Table 3(a). The 6-dimensional 8PSK modulation signal space partition I. 

Partition 

level 

s6 

A 

B 

C 

D 

E 

# of 

subsets 

1 

2 

4 

8 

16 

32 

Partition rule 

512 I .- 

128 I 
64 1 C/C,: C,={OOo} 

8x[C/C4] : G4 - 
32 I - k:] 
16 I 8x[C/C5] : GF= [Oll] 

4 = 0.586 

2 A g =  1.172 
~~ 

2Ai = 1.172 

A: = 2 

2A: = 4 

2A: = 4 



37 

16 

. .  1 

r Table 3(b). The 6-dimensional 8PSK modulation signal space partition II. 

8x[C/C,] : G5 = [Oll] 

# of 

subsets 

1 

2 

4 

8 

16 

32 

Partition rule 

512 1 

128 I 
c/c3 : c3 = {OOO} 

8x[C/C4] : G4 
32 I 

4 = 0.586 

4 = 0.586 

3Ag = 1.757 

A! = 2 

2A: = 4 

2Af = 4 
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Table 4. The 8-dimensional 8PSK modulation signal space partition 

Partition 

level 

# of 
subsets 

N(9 Partition rule 

s8 4 = 0.586 

A C/C, : GI = 2A;= 1.176 2 I 2048 

B 4 1 1024 2A;= 1.176 

A! = 2 C 

D 4A; = 2.343 8~{2[C/C4]} : G4 = GI 

16x[C/C5] : G5 = GI E 26: = 4 

2A: = 4 F 

G 16x[C/C7] : G7 = G3 26: = 4 
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Table 5. Signal subsets and encoder output mapping for Example 1 

b l  b2 b4 b5 b3 b6 

* * * 
* * * B1 

B2 

* * * 
* * * B3 

B4 

* 
* 

* 
* 

Table 6. Signal subsets and encoder output mapping for Example 2 

* *  * *  * * 
B1= P1xP1xP1  * *  * * Pxpoxpo~ * * 

* *  * *  
* *  * *  c * * 

* * 

* *  * *  * * 
B4= P ~ X P O X P O  * *  * * Pxplxpll * * 

O 1 1  O I  

O 1 0  

0 0  7 
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4 0  :’ 

. ’  . 

0 0  

Table 7(a). R = 5/6 trellis coded 2*8PSK1 
(R,ff = 1.25 bitddimension) 

0 2 ,  
1.757 

0 0  r! 0 0  8) ’: 0 0  (i! 
,o 0 .o 0, 

2.0 

4 0  0 0  1;;’ 1:; 0 0, 

2.929 

0 0 ’  
1 1  

‘ 0 0  0 0  
,o 0, 

8 

16 

3.98 

4.54 

6.20 

0.41 

0.97 

2.63 

Generators Matrices2 

GO G l  G2 

4 0  1: 0 2  B 

1: Equivalent codes have been found independently by Costello and Lafanechere [5] and by 

2: Generator matrices are given in octal notation. 
x x r * *  - rL i  . T * i . J ” i l  L Y J .  
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2) 

1 

2 

3.172 

4.0 

4.0 

Table 7(b). R = 4/6 trellis coded 2*8PSK 
(Reff = 1 biudimension) 

8 

6 

2 

5.57 

6.5 8 

6.58 

2.00 

3.01 

3.01 

Generators Matrices 

GO G1 G2 

4 0  0 0  0 0  

[E] 0 4  I;;] 0 0  [E] 0 0  



42 

0 0 O’, 
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 1  
0 0 0  
0 0 0, 

, . 

~- - - .  

0 0 0  
1 0 1  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0, 

Table 8(a). R = 8/9 trellis coded 3*8PSK 
(Reff = 1.33 bits/dimension) 

4 

16 

2.49 

4.26 

4.82 

-1.08 

0.69 

1.25 

Generators Matrices 

GO G1 G2 

4 0 0  
2 0 0  
0 1 0  
0 4 0  
0 2 0  
0 0 4  
0 0 2  
1 1 1  

0 0 0  
0 0 0  
1 1 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0 ,  

4 0 0  
2 0 0  
1 1 1  
0 4 0  
0 2 0  
0 1 0  
0 0 4  
0 0 2  

0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 1 0  
0 0 0  
0 0 0  

(1 

-+ u -e 

2 0 0  
0 1 1  
1 0 1  
0 4 0  
0 2 0  
0 0 4  
0 0 2  

II: Partition II 
I : Partition I 
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0 0 0 '  

1 0 1  
0 0 0  
0 0 0  
0 0 0  

1000 

- 0  0 0, 

d? 

2.0 

2.342 

0 0 2  0 1 0  
1 1 1  
0 4 0  
0 2 2  0 0 0  

Table 8(b). R = 7/9 trellis coded 3*8PSK 
(Reff = 1.167 bitsldimension) 

,o 0 4 ,  

6 

80 0 0 

8 

y8PSK 

4.24 

4.93 

6.98 

0.67 

1.36 

3.41 

Generators Matrices 

GO Gl G2 

4 0 0  
2 0 0  
0 1 1  
0 4 0  
0 2 0  
0 0 4  
0 0 2  

0 0 2  
1 1 1  
0 4 0  

0 0 0  
0 0 0  
0 1 0  
0 0 2  
0 0 0  
0 0 0  
0 0 0  

'0 0 01 
n n n  
1 1 1  

0 0 0  
0 0 0  

(n) 
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'0 0 0' 
0 0 0  
1 1 1  
0 0 0  
0 0 0  

" t 

-0 0 0, 

1 

4 0 0'  '0 0 0' 
2 0 2  0 0 0  
0 0 2  1 1 1  

0 0 0  0 4 0  
0 0 0  0 2 2  

0 0 4. (0 0 0, 

2 

' 0  0 0' 
0 0 0  
0 0 2  
0 0 0  
0 0 0  

,o 0 0 ,  

Table 8(c). R = 6/9 trellis coded 3*8PSK 
@teff = 1 bitldimension) 

v v v  
1 1 1  
2 0 2  
0 0 0  
0 0 0  

+o 0 0 

6.3 1 

u v -0 

0 0 2  
0 0 0  
0 0 0  
0 0 0  
0 0 0 ,  

6.58 

YQPSK 

2.74 

3.01 

Generators Matrices 

GO G1 G2 

4 0 0  
2 0 2  
0 0 2  
0 4 0  
0 2 2  
0 0 4  

4 u u  
2 0 2  
0 0 2  
0 4 0  
0 2 2  
0 0 4  



1 ” , 

‘ 4 0 0 0  
2 0 0 0  
0 4 0 0  
0 2 0 0  
1 0 1 0  
1 1 0 0  
0 0 4 0  
0 0 2 0  

u 

1 

- 

2 

4.95 

d? 

1.172 

‘ 4 0 0 0 ’  ‘0000’ 
2 0 0 0  0 0 0 0  
0 4 0 0  0 0 0 0  
0 2 0 0  0 0 0 0  
1 0 1 0  1 1 1 0  

1.38 1 1 0 0  1 0 1 0  
0 0 4 0  0 0 0 0  
0 0 2 0  0 0 0 0  
0 0 0 4  0 0 0 0  
0 0 0 2  0 0 0 0  

, 1 1 1 1 ,  , 0000 .  

1.757 

45 

Table 9(a) R = 11/12 trellis coded 4*8PSK 
(R eff = 1.375 bits/dimension) 

8 

48 

Generators Matrices 

Go G1 G2 

4 0 0 0  
2 0 0 0  
1 0 1 0  
0 4 0 0  
0 2 0 0  
0 1 1 0  
0 0 4 0  
0 0 2 0  
0 0 0 4  
0 0 0 2  
0 1 0 1  

0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 1 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

, 0 0 0 0  

’ 0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
1 1 1 0  
1 0 1 0  
0 0 0 0  
0 0 0 0  
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3 

- 

Table 9(b). R = 10/12 trellis coded 4*8PSK 
(Raw = 1.25 bits/dirnension) 

' 0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
1 1 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

, 0 0 0 0  

bll 

' 4 0 0 0  
2 0 0 2  
0 0 0 2  
1 0 1 0  
0 4 0 0  
0 2 0 2  
0 0 4 0  
0 0 2 2  

2) 

- 

1 

- 

2 

' 0 0 0 0  
0 0 0 0  
1 1 0 0  
0 0 0 2  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

,0000 

2.0 

2.343 

2.343 

8 

72 

8 

4.54 

5.23 

5.23 

0.97 

1.66 

1.66 

Generators Matrices 

Go G1 G2 

4 0 0 0  
2 0 0 0  
0 4 0 0  
0 2 0 0  
1 0 1 0  
0 0 4 0  
0 0 2 0  
0 0 0 4  
0 0 0 2  
1 1 1 1  

0 0 0 0  
0 0 0 0  
1 1 0 0  
0 0 0 2  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

U U U 4  U V V U  I ~ ~ ~ ~ I  i o o o o j  

4 0 0 0  
2 0 0 2  
0 0 0 2  
1 0 1 0  
0 4 0 0  
0 2 0 2  
0 0 4 0  
0 0 2 2  
0 0 0 4  
1 1 1 1  

0 0 0 0  
0 0 0 0  
1 0 1 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
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2) 

1 

2 

3 

2.343 

3.172 

4.0 

Table 9(c). R = 9/12 trellis coded 4*8PSK 
(Reff = 1.125 bits/dimension) 

8 

16 

28 

4.77 

6.08 

7.09 

1.20 

~ 

2.5 1 

3.52 

Generators Matrices 

GO G1 G2 

4 0 0 0  
2 0 0 0  
0 0 0 2  
0 4 0 0  
0 2 0 2  
0 0 4 0  
0 0 2 2  
0 0 0 4  
1 1 1 1  

0 0 0 0 '  
0 0 0 0  
1 0 1 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0000,  

4 0 0 0  
2 0 0 2  
1 1 1 1  
0 0 0 2  
0 4 0 0  
0 2 0 2  
0 0 4 0  
0 0 2 2  
0 0 0 4  

0 0 0 0  
0 0 0 0  
0 1 0 1  
1 1 1 1  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

4 0 0 0  
2 0 0 2  
1 1 1 1  
0 0 0 2  
0 4 0 0  
0 2 0 2  
0 0 4 0  
0 0 2 2  
0 0 0 4  

0 0 0 0 '  
0 0 0 0  
0 1 0 1  
1 1 1 1  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0000 ,  

0000 '  
0 0 0 0  
0 0 0 2  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0000, 
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2) 

1 

2 

3 

4.0 

4.0 

Table 9(d). R = 8/12 trellis coded 4*8PSK 
(Reff = 1 bitldimension) 

12 

6.58 

6.58 

3.01 

3.01 

Generators Matrices 

GO G1 

4 0 0 0  
2 0 0 2  
1 1 1 1  
0 4 0 0  
0 2 0 2  
0040 
0 0 2 2  
0 0 0 4  

0 0 0 0  
0 0 0 0  
0 0 0 2  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

4 0 0 0  
2 0 2 0  
0 0 2 2  
1 1 1 1  
0 4 0 0  
0 2 0 2  
0 0 4 0  
0 0 0 4  

0 0 0 0  
0 0 0 0  
0 0 0 2  
0 0 2 2  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

0 0 0 2  ::::I 0 0 0 0  


